Sums of random Hermitian matrices and an inequality by Rudelson

نویسنده

  • Roberto Imbuzeiro Oliveira
چکیده

i=1 ǫiAi (1) of deterministic Hermitian matrices A1, . . . , An multiplied by random coefficients. Recall that a Rademacher sequence is a sequence {ǫi}i=1 of i.i.d. random variables with ǫ1 uniform over {−1,+1}. A standard Gaussian sequence is a sequence i.i.d. standard Gaussian random variables. Our main goal is to prove the following result. Theorem 1 (proven in Section 3) Given positive integers d, n ∈ N, let A1, . . . , An be deterministic d× d Hermitian matrices and {ǫi}i=1 be either a Rademacher sequence or a standard Gaussian sequence. Define Zn as in (1). Then for all p ∈ [1,+∞),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Inequalities and Schubert Calculus

Using techniques from algebraic topology we derive linear inequalities which relate the spectrum of a set of Hermitian matrices A1, . . . , Ar ∈ Cn×n with the spectrum of the sum A1 + · · ·+Ar. These extend eigenvalue inequalities due to Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.

متن کامل

Smallest singular value of random matrices and geometry of random polytopes

We study behaviour of the smallest singular value of a rectangular random matrix, i.e., matrix whose entries are independent random variables satisfying some additional conditions. We prove a deviation inequality and show that such a matrix is a “good” isomorphism on its image. Then we obtain asymptotically sharp estimates for volumes and other geometric parameters of random polytopes (absolute...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

Matrices with Prescribed Row and Column Sums

This is a survey of the recent progress and open questions on the structure of the sets of 0-1 and non-negative integer matrices with prescribed row and column sums. We discuss cardinality estimates, the structure of a random matrix from the set, discrete versions of the Brunn-Minkowski inequality and the statistical dependence between row and column sums.

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010